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DIFFUSION OF A DISSOLVED GAS IN A FLOW WITH A STATIONARY CAVITY 
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An exact solution is obtained for the plane problem of the diffusion of 
a gas from a solution into a stationary cavity behind a symmetric pro- 
file for a zero cavitation number in an ideal tiquid, and its approxi- 
mate generalizations are indicated. 

Th is  p a p e r  c o n s i d e r s  the  p lane  p r o b l e m  of the df f -  
fus ion  of a d i s s o l v e d  gas  in the f low of an idea l  l iqu id  
in the  p r e s e n c e  of a s y m m e t r i c  s t a t i o n a r y  cav i ty  on 
the body in the  s t r e a m l i n i n g  f low.  The  l iqu id  i s  a s -  
s u m e d  to be w e i g h t l e s s ,  i n v i s c i d ,  and i n c o m p r e s s i b l e .  

S e p a r a t i o n  of the g a s e s  d i s s o l v e d  in the  l iquid  in 
the  zones  of r e d u c e d  p r e s s u r e  [1-3]  m a y  e x e r t  con-  
s i d e r a b l e  inf luence  on the d e v e l o p m e n t  of cav i t a t i ona l  
p r o c e s s e s .  The  p r o b l e m  unde r  c o n s i d e r a t i o n  h e r e  m a y  
be of p r a c t i c a l  i n t e r e s t  in v iew of the  p ronounced  i n -  
t e n s i f i c a t i o n  of gas  s e p a r a t i o n  in the  p r e s e n c e  of a 
r e l a t i v e  ve loc i t y  at  the  phase  b o u n d a r y  [4]. 

Unde r  our  a s s u m p t i o n s  the  p r o b l e m  r e q u i r e s  the 
jo in t  c o n s i d e r a t i o n  of the  equa t ions  of mot ion  fo r  an 
idea l  Liquid and the F i c k  equa t ion  d e s c r i b i n g  the d i f -  
fus ion  of the d i s s o l v e d  s u b s t a n c e  in the f low.  F o r  the 
p lane  c a s e  in r e c t a n g u l a r  c o o r d i n a t e s  the  F i c k  e q u a -  
t ion has  the f o r m  

OC , OC [O~C O'CI. % = k + (1) 

Here  k i s  the  coe f f i c i en t  of m o l e c u l a r  d i f fus ion;  C i s  
the c o n c e n t r a t i o n  of the so lu t ion ;  v x and Vy a r e  the  
p r o j e c t i o n s  of the  f low v e l o c i t y ,  and t h e s e  a r e  func-  
t ions  of the  c o o r d i n a t e s  x,  y .  

Since the  c o n c e n t r a t i o n  C is  not  inc luded  in the e q u a -  
t ions  of mot ion ,  d e t e r m i n a t i o n  of the  funct ions  v x and 
Vy for the cavitation streamlining regime for a body of 
the given shape involves a conventional hydrodynamic 
problem whose solution we assume to be available. 
Bearing in mind the constancy of pressure at the cavity 
boundary, we can write the boundary condition at the 
cavity for the diffusion problem in accordance with the 
Henry-Dalton Law as 

C = G = C ~  P~ (2) 
Po 

Absence  of gas  exchange  with the body at  the  b o u n d a r y  
y i e l d s  

OC/On = O. (2') 

In the u n p e r t u r b e d  f low 

C -~ C~. (2") 

In bounda ry  cond i t ions  (2), (2 ') ,  and (2") we have  u sed  
the fo l lowing  nota t ion:  Pc and Pa a r e  the  p r e s s u r e  in 
the cav i t y  and the  a t m o s p h e r i c  p r e s s u r e ,  r e s p e c t i v e l y ;  

C s and Csa a r e  the s a t u r a t i o n  concen t r a t i ons  c o r r e -  
sponding  to t h e s e  p r e s s u r e s ;  n is  the n o r m a l  a t  the 
b o u n d a r y  of the  body .  

In b o u n d a r y  condi t ion  (2) we a s s u m e  the equat ion 
fo r  the cav i ty  contour  to  be known f r o m  the so lu t ion  of 
the h y d r o d y n a m i c  p r o b l e m .  It  is  p o s s i b l e  to obta in  a 
r i g o r o u s  so lu t ion  in g e n e r a l  f o r m  of Eq.  (1) with bound-  
a r y  condi t ions  (2), (2') ,  and (2"), which r e q u i r e s  no 
s p e c i f i c a t i o n  of v x and Vy o r  the  cav i t y  con tou r ,  by 
tu rn ing  to  the h y d r o d y n a m i c  s t r e a m  funct ions  r and the 
po ten t i a l  ~o, a n d t a k i n g  the l i ne s  of cons tan t  r and ~p r a t h -  
e r  t ha n the  x -  and y - c o o r d i n a t e  axes  to be the coord ina t e  
l i n e s .  In th i s  c a s e ,  e v e r y w h e r e  with the excep t ion  of 

2 = 0, Eq.  (1) t r a n s -  the  c r i t i c a l  po in t  a t  which V2x + Vy 
f o r m s  to the s i m p l e s t  fo rm 

• 0 c  = + (3) 
k O~p atp 2 oq? 

The change of v a r i a b l e s  m a d e  i t  p o s s i b l e  to e l i m i n a t e  
the v a r i a b l e  coe f f i c i en t s  f r o m  the m a i n  equat ion .  S ig -  
n i f i can t  a l so  is  the  f ac t  that  un l ike  Eq.  (1), Eq.  (3) is  
cons t an t  fo r  a l l  p o s s i b l e  shapes  of the s t r e a m l i n e d  
body and the cav i ty .  The  b o u n d a r i e s  of the  r eg ion  for  
which a so lu t ion  is being sought  in the ~ ,  r p lane a r e  
a l so  s i gn i f i c an t l y  s i m p l i f i e d  and a s s u m e  the f o r m  of a 
s i m p l e  s e c t i on  aIong the  ~ - a x i s  fo r  any  shape  of the  
s t r e a m l i n e d  body .  

In th is  connec t ion ,  the bounda ry  condi t ions  of the 
p r o b l e m  can be w r i t t e n  in the f o r m  

C = C~o, C = Csa Pc (4) 
Pa 

at  an inf in i te  d i s t a n c e  f rom the body and at  the bound-  
a r y  of the  s e c t i o n ,  r e s p e c t i v e l y .  

The  condi t ion spec i fy ing  an a b s e n c e  of gas  exchange 
at  the bounda ry  of the body is s a t i s f i e d  a u t o m a t i c a l l y  
a s  a r e s u l t  of flow s y m m e t r y .  The r e s u l t s  thus ob-  
t~tined ind ica te  tha t  the  p o s s i b l e  quant i t a t ive  v a r i a t i o n s  
in the condi t ions  of the in i t i a l  p r o b l e m - - a s s o c i a t e d  with 
a s p e c i f i c  body shape  and the condi t ions  of i ts  s t r e a m -  
l in ing gas  def ined  by the cav i t a t ion  n u m b e r  

= ( p ~  - -  p ~  

fo r  the d i f fus ion p r o b l e m - - a f f e c t  only the  va lue s  of the  
v e l o c i t y  po ten t ia I  a t  the  e x t r e m e  poin ts  of the  cav i tv .  
He re  Poo and v~o a r e ,  r e s p e c t i v e l y ,  the p r e s s u r e  and 
ve loc i t y  in the u n p e r t u r b e d  f low. 

A r i g o r o u s  so lu t ion  of Eq.  (3) fo r  bounda ry  cond i -  
t ions  (4) can be ob ta ined  only fo r  the c a s e  c~ = 0, which 
c o r r e s p o n d s  to a cav i ty  of inf in i te  length ,  found in a 
r e g i m e  of j e t  s t r e a m l i n i n g  (Kirchhoff  f low).  Ex tens ion  
to the e a s e  of f in i te  cav i ty  d i m e n s i o n s  m a y  be ach ieved  
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analogously to the case of friction of a viscous liquid 
on a plate of finite length, assuming that the neglected 
portion of the semi-infinite section has no effect on the 
diffusion processes at a point located upstream. 

Considering the boundary conditions, it is possible 
to achieve a further simplification of the problem by 
turning to parabolic coordinates: 

as a result  of which the partial differential equation (3) 
changes into an ordinary differential equation 

d2C 1 dC 
�9 = 2 ~  - - .  ( 5 )  

d~ ~ k d ~  

The solution of Eq. (5) with respect  to the boundary 
conditions for ~ = 0 is expressed by the probability 
integral as a function of the complex argument 

c (~; , )  = (C= --  G) x 

k 

where ~ is the value of the potential at the forward 
point of the cavity. To calculate the values of the con- 
centrations C from solution (6) at a given point on the 
(x,y)-plane it is still necessary  to solve the hydrody- 
namic problem to determine the potential and the 
s t ream function in Eq. (6). For  practical  purposes,  
the determination of the gas flow rate through the cavi- 
ty boundary is of great  interest.  The specific features 
of cavitating flows make it possible for this problem 
to achieve the transition to physical space in the gen- 
eral form. 

If S denotes the length of the cavity boundary from 
its point of convergence with the body, n the normal to 
the cavity boundary (with the normal directed into the 
flow), and v c the velocity at the cavity boundary, we 
can write the familiar relationships: 

OC OC 
Vc, (7) 

On O~ 

O?~ = v~, (8) 
Os 

vr = v= V 1 + a. (9) 

Having integrated (8) along the cavity boundary, be- 
cause v c = const, we obtain 

~P - -  q~l = VcS. (10) 

Having differentiated (6) with respect  to r with consid- 
eration given to (7), (9), and (10), for the concentra-  
tion gradient along the normal to the cavity boundary 

= 0 we obtain the expression 

OC C = - - C ~ .  / v= 4 
~ s  ,Y,l+o.  (11) V On V~ 

The per-second mass  flow rate of the gas into the cav-  
ity through the element dS of the cavity boundary ac-  
cording to the Nernst law is equal to 

dM = }C---ds. (12) 
On 

After integration of (12) with consideration of (11) for 
the total gas flow rate into a symmetr ic  cavity with 
two boundaries each of which exhibits a length L along 
the curve and a width B along the generatrix,  it is 
possible to derive the formula 

M = 4k ~ V 1 + ~ B. (13) 

Analysis of formula (13) shows that in approximate 
t e rms  it can be derived if the cavity is assumed to be 
thin and it is replaced by its section in the physical 
plane along the x-axis,  and if it is assumed in the 
velocity projections that 

v x ~ v e ;  vu = O. 

The additional assumption of the smallness of 32C/ax2 
in comparison with 02C/0y 2 makes it possible to extend 
formula (13) to the axisymmetr ic  problem. 

N OT ATION 

C is the dissolved gas concentration; k is the gas 
diffusivity coefficient in a solution; x and y are the 
rectangular coordinates; ~ and 7} are the parabolic 
coordinates; ~o and r are the potential and function of 
current; v is the flow velocity; p is the pressure; p is 
the liquid density; ~ is the cavitation number; n is the 
normal to the boundary of a cavity; s is the arc length 
along the cavity boundary; M is the gas mass released 
into a cavity per unit time; L is the cavity length along 
its boundary; B is the width or size of a body and a 
cavity. 
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